Transmission eigenchannels and the densities of states of random media.

نویسندگان

  • Matthieu Davy
  • Zhou Shi
  • Jing Wang
  • Xiaojun Cheng
  • Azriel Z Genack
چکیده

We show in microwave measurements and computer simulations that the contribution of each eigenchannel of the transmission matrix to the density of states (DOS) is the derivative with angular frequency of a composite phase shift. The accuracy of the measurement of the DOS determined from transmission eigenchannels is confirmed by the agreement with the DOS found from the decomposition of the field into modes. The distribution of the DOS, which underlies the Thouless number, is substantially broadened in the Anderson localization transition. We find a crossover from constant to exponential scaling of fluctuations of the DOS normalized by its average value. These results illuminate the relationships between scattering, stored energy, and dynamics in complex media.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal structure of transmission eigenchannels inside opaque media

As the desire to explore opaque materials is ordinarily frustrated by multiple scattering of waves, attention has focused on the transmission matrix of the wave field. This matrix gives the fullest account of transmission and conductance and enables the control of the transmitted flux; however, it cannot address the fundamental issue of the spatial profile of eigenchannels of the transmission m...

متن کامل

Transmission eigenchannels in a disordered medium

While the distribution of the transmission eigenvalues of a disordered medium is well understood in the context of random-matrix theory, the properties of eigenchannels have remained unexplored. In this study, we have solved electromagnetic wave propagation through a disordered medium using the finite-difference time-domain method, we numerically constructed a transmission matrix in an optical ...

متن کامل

The single-channel regime of transport through random media

The propagation of light through samples with random inhomogeneities can be described by way of transmission eigenchannels, which connect incoming and outgoing external propagating modes. Although the detailed structure of a disordered sample can generally not be fully specified, these transmission eigenchannels can nonetheless be successfully controlled and used for focusing and imaging light ...

متن کامل

Preferential coupling of an incident wave to reflection eigenchannels of disordered media

Light waves incident to a highly scattering medium are incapable of penetrating deep into the medium due to the multiple scattering process. This poses a fundamental limitation to optically imaging, sensing, and manipulating targets embedded in opaque scattering layers such as biological tissues. One strategy for mitigating the shallow wave penetration is to exploit eigenchannels with anomalous...

متن کامل

Inverse design of perfectly transmitting eigenchannels in scattering media

Light-matter interactions inside a turbid medium can be controlled by tailoring the spatial distribution of energy density throughout the system. Wavefront shaping allows selective coupling of incident light to different transmission eigenchannels, producing dramatically different spatial intensity profiles. In contrast to the density of transmission eigenvalues that is dictated by the universa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 114 3  شماره 

صفحات  -

تاریخ انتشار 2015